1. 什么是 CAP 定理
2000 年的时候,Eric Brewer 教授提出了 CAP 猜想,2年后,被 Seth Gilbert 和 Nancy Lynch 从理论上证明了猜想的可能性,从此,CAP 理论正式在学术上成为了分布式计算领域的公认定理。并深深的影响了分布式计算的发展。 CAP 理论告诉我们,一个分布式系统不可能同时满足一致性(C:Consistency),可用性(A: Availability)和分区容错性(P:Partition tolerance)这三个基本需求,最多只能同时满足其中的2个。
C (一致性):对某个指定的客户端来说,读操作能返回最新的写操作。
对于数据分布在不同节点上的数据来说,如果在某个节点更新了数据,那么在其他节点如果都能读取到这个最新的数据,那么就称为强一致,如果有某个节点没有读取到,那就是分布式不一致。
A (可用性):非故障的节点在合理的时间内返回合理的响应(不是错误和超时的响应)。可用性的两个关键一个是合理的时间,一个是合理的响应。
合理的时间指的是请求不能无限被阻塞,应该在合理的时间给出返回。合理的响应指的是系统应该明确返回结果并且结果是正确的,这里的正确指的是比如应该返回 50,而不是返回 40。
P (分区容错性):当出现网络分区后,系统能够继续工作。打个比方,这里集群有多台机器,有台机器网络出现了问题,但是这个集群仍然可以正常工作。
熟悉 CAP 的人都知道,三者不能共有,如果感兴趣可以搜索 CAP 的证明,在分布式系统中,网络无法 100% 可靠,分区其实是一个必然现象。
如果我们选择了 CA 而放弃了 P,那么当发生分区现象时,为了保证一致性,这个时候必须拒绝请求,但是 A 又不允许,所以分布式系统理论上不可能选择 CA 架构,只能选择 CP 或者 AP 架构。
对于 CP 来说,放弃可用性,追求一致性和分区容错性,我们的 ZooKeeper 其实就是追求的强一致。
对于 AP 来说,放弃一致性(这里说的一致性是强一致性),追求分区容错性和可用性,这是很多分布式系统设计时的选择,后面的 BASE 也是根据 AP 来扩展。
顺便一提,CAP 理论中是忽略网络延迟,也就是当事务提交时,从节点 A 复制到节点 B 没有延迟,但是在现实中这个是明显不可能的,所以总会有一定的时间是不一致。
同时 CAP 中选择两个,比如你选择了 CP,并不是叫你放弃 A。因为 P 出现的概率实在是太小了,大部分的时间你仍然需要保证 CA。
就算分区出现了你也要为后来的 A 做准备,比如通过一些日志的手段,是其他机器回复至可用。
什么是分区?
在分布式系统中,不同的节点分布在不同的子网络中,由于一些特殊的原因,这些子节点之间出现了网络不通的状态,但他们的内部子网络是正常的。从而导致了整个系统的环境被切分成了若干个孤立的区域。这就是分区。
2. 为什么只能 3 选 2
首先问,能不能同时满足这三个条件?
假设有一个系统如下:
整个系统由两个节点配合组成,之间通过网络通信,当节点 A 进行更新数据库操作的时候,需要同时更新节点 B 的数据库(这是一个原子的操作)。 上面这个系统怎么满足 CAP 呢?C:当节点A更新的时候,节点B也要更新,A:必须保证两个节点都是可用的,P:当节点 A,B 出现了网络分区,必须保证对外可用。 可见,根本完成不了,只要出现了网络分区,A 就无法满足,因为节点 A 根本连接不上节点 B。如果强行满足 C 原子性,就必须停止服务运行,从而放弃可用性 C。 所以,最多满足两个条件:
组合 | 分析结果 |
---|---|
CA | 满足原子和可用,放弃分区容错。说白了,就是一个整体的应用。 |
CP | 满足原子和分区容错,也就是说,要放弃可用。当系统被分区,为了保证原子性,必须放弃可用性,让服务停用。 |
AP | 满足可用性和分区容错,当出现分区,同时为了保证可用性,必须让节点继续对外服务,这样必然导致失去原子性。 |
3. 能不能解决 3 选 2 的问题
难道真的没有办法解决这个问题吗?
CAP 理论已经提出了 13 年,也许可以做些改变。
仔细想想,分区是百分之百出现的吗?如果不出现分区,那么就能够同时满足 CAP。如果出现了分区,可以根据策略进行调整。比如 C 不必使用那么强的一致性,可以先将数据存起来,稍后再更新,实现所谓的 “最终一致性”。